
try

Command Reference
Table of contents

1 Description...2

2 Usage..2

3 Examples..3

Generated by ControlTier
http://open.controltier.com/

http://open.controltier.com/
http://open.controltier.com/

1. Description

try catch finally.

The try command models the familiar try/catch/finally control structure. The command lets
you run an ad hoc or defined command and optionally run a different one if the first one fails
and yet another one after the first one has finished.

The try command will attempt to execute a command. Commands can be one of these
things:

• executable: Run the specified executable
• script: Evaluate the script using the specified executable
• scriptfile: Run the script file using the specified executable
• command: Run the defined command in the specified module

The "catch" and "finally" actions are similarly specified but are prefixed with that
corresponding name (eg, catchexecutable, catchscript, finallyexecutable, finallyscript).

If an error occurs during the execution of the command and no catch command is specified
then try will exit with an error. If a catch command is specified, the try command will exit
normally (assuming the catch command or finally one does not error too).

static: This command can be run outside of an object context.

2. Usage

ctl -m logicutil -c try [-argline <>] [-catchargline <>]
[-catchcommand <>] [-catchexecutable <>] [-catchscript <>]
[-catchscriptfile <>] [-command <>] [-executable <>]
[-finallyargline <>] [-finallycommand <>] [-finallyexecutable
<>] [-finallyscript <>] [-finallyscriptfile <>] [-output <>]
[-script <>] [-scriptfile <>]

2.1. Options

Options are grouped into roughly three parts: the action to try, the catch action and the finally
action.
try [try options] [catch options] [finally options]

Ad hoc commands are supported via the executable and script and scriptfile
options. You can run a defined command via the command options. Defined commands are
specified using type#command (eg, netutil#listening).

try

Page 2
Generated by ControlTier

http://open.controltier.com/

http://open.controltier.com/
http://open.controltier.com/

If a script or scriptfile is specified but no executable, the command will default executable to
sh on unix or cmd.exe on windows.

Option Description Type Default

argline The tryargline to try. string

catchargline The catch argline. string

catchcommand The catch CTL
command.

string

catchexecutable The catch executable. string

catchscript The catch script. string

catchscriptfile The catch scriptfile. string

command The CTL command to
try.

string

executable The executable to try. string

finallyargline The finally argline. string

finallycommand The finallycommand
CTL command.

string

finallyexecutable The finally executable. string

finallyscript The finally script. string

finallyscriptfile The finally scriptfile. string

output Direct try output to file. string

script The script to try. string

scriptfile The scriptfile to try. string

3. Examples

Execute an inline shell script. Echos the string "hello" to the console:
ctl -p demo -m logicutil -c try -- -executable /bin/sh -script "echo hello"

output: hello

Execute a script file. Here's a script called "/tmp/hello.sh" that echos the argument string
specified via the "-argline" option:

try

Page 3
Generated by ControlTier

http://open.controltier.com/

http://open.controltier.com/
http://open.controltier.com/

#!/bin/sh
echo "$@"

Use the "scriptfile" option. The "argline" argument will be passed as the arguments to the
script.
ctl -p demo -m logicutil -c try -- -executable /bin/sh -scriptfile
/tmp/hello.sh -argline hello

output: hello

Catch errors with a catch action. A catch action is specified similar to the one being tried.
Here's an example that intentionally fails by causing the script to exit non-zero.
ctl -p demo -m logicutil -c try -- \
-executable /bin/sh -script "exit 1" -catchexecutable /bin/sh

-catchscript "echo caught the error"

output: caught the error

Errors that are caught prevent the try command from exiting with an error. The command
will exit with a 0 exit code. (eg, $? = 0)

A finally action will run no matter if an error is occurs or not
ctl -p demo -m logicutil -c try -- \
-executable /bin/sh -script "exit 1" -catchexecutable /bin/sh -script

"echo caught the error" \
-finallyexecutable /bin/sh -finallyscript "echo caught the error"

output:

Caught exception: shell-exec returned: 1
caught the error
finally

Commands defined in modules can also be called. Commands are referenced using this
notation: typename#commandname.

Here's an example that calls the available command in the fileutil module.
ctl -p demo -m logicutil -c try -- -command fileutil#available -argline
"-file /etc/motd"

output: true

Here available is run again but this time referring to a file that does not exist.
ctl -p demo -m logicutil -c try -- \

-command fileutil#available -argline "-file /tmp/bogus
-failonerror" -catchscript "echo file was bogus"

output:

Caught exception: The following error occurred while executing this line:
/Users/alexh/ctier/ctl/modules/fileutil/commands/available.xml:26: file not

try

Page 4
Generated by ControlTier

http://open.controltier.com/

../../../../reference/user/fileutil/index.html
http://open.controltier.com/
http://open.controltier.com/

found: /tmp/bogus
file was bogus

try

Page 5
Generated by ControlTier

http://open.controltier.com/

http://open.controltier.com/
http://open.controltier.com/

	1 Description
	2 Usage
	2.1 Options

	3 Examples

